Pengaruh Ukuran Partikel Arang Sekam Padi Dan Waktu Refluks terhadap Kadar Abudan Daya Serap Karbon Sekam Padi

Solihudin Solihudin, Atiek Rostika Noviyanti, Iman Rahayu

Abstract


The highest content in rice husk is ash with its main component of silica. Silica in ash causes the low adsorption capacity. Activated carbon from rice husk can be obtained by lowering the ash content. The aim of this study is determine the effect of particle size of charcoal and reflux time the ash content using a solution of potassium carbonate. The activation of rice husk char was carried out by using reflux methods with a potassium carbonate solution. The resulted carbon was washed using hydrochloric acid tested using iodine and methylene blue to examine of its adsorbance. The particle size of rice husk and reflux time decrease ash content in rice husk. In general, husk with the size of 80 mesh can produce carbon with low ash content and high absorption using reflux time at least for 120 minutes. Rice husk size of 100 mesh refluxing with potassium carbonate for 150 minutes can reduce the ash content as 91.85% and adsorptivity of the iodine at 331 mg.g -1 .


Keywords


activated carbon, iodine numbers, methylene blue numbers, rice husk char

Full Text:

PDF

References


Hieu, N.M., Korobochkin, V.V &Tu, N.V. 2015. A study of silica separation in the production of activated carbon from rice husk in Viet Nam. Procedia Chemistry 15: 308–312.

Liu Y., Guo Y., Gao W., Wang Z., Yuejia Ma & Wang Z. 2012. Simultaneous preparation of silica and activated carbon from rice husk ash. Journal of Cleaner Production 32: 204–209.

Liu, D., Zhang, W., Lin, H., Li, Y., Lu, H &Yan, Y. 2016. A green technology for the preparation of high capacitance rice husk-based activated carbon. Journal of Cleaner Production 112: 1190–1198.

Masitoh, F.Y & Sianita, B.M.M. 2013. Pemanfaatan arang aktif kulit buah coklat (Theobroma cacao L.) Sebagai adsorben logam berat Cd (II) dalam pelarut air. Unesa Journal of Chemistry 2(2): 23–27.

Mianowski, A., Owczarek. M & Marecka. 2007. Surface Area of Activated Carbon Determined by the Iodine Adsorption Number. Energy Sources, Part A 29: 839– 850.

Muniandy, L., Adam, F., Mohamed,A. R & Ng, E. P. 2014. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials 197: 316–323.

Nunes, C.A & Guerreiro, M. C. 2011. Estimation of Surface Area and Pore Volume of Activated Carbons by Methylene Blue and Iodine Numbers. Quim. Nova 34(3): 472–476.

Solihudin 2011. Sintesis dan Karakterisasi Komposit Karbon/Silikalit-1 Berbahan Dasar Sekam Padi. Disertasi. Bandung: Unpad.

Solihudin, Noviyanti, A.R & Rukiah 2015. Aktivasi arang sekam padi dengan larutan natrium karbonat dan karakterisasinya. JCNA 3(1): 11–16.

Suhendarwati L., Suharto, B & Dewi L.S. (2014). Pengaruh konsentrasi larutan kalium hidroksida pada abu dasar ampas tebu teraktivasi. Jurnal Sumber Daya Alam dan lingkungan 1(1): 19–25.

Teoa, E. Y. L., Muniandy, L., Ng, E. P.,Adam, F., Mohamed, A. R., Jose, R & Chong, K. F. 2016. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta 192: 110–119.

Yeletsky, P.P., Yakovlev, V.A., Mel’gunov, M.S & Parmon, V.N. 2009. Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk. Microporous and Mesoporous Materials 121: 34– 40.




DOI: http://dx.doi.org/10.31258/jnat.17.1.33-41

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Solihudin, Atiek Rostika Noviyanti, Iman Rahayu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.