Bioremediation, Biosorption and Biodegradation of the Textile Dye Reactive Black 5 by Life Cultures of Trichoderma asperellum LBKURCC1

Titania Tjandrawati Nugroho, Putri Nabilah, Nuria Wulandari, Yuana Nurulita, Andi Dahliaty, Yanti Yanti

Abstract


Reactive black 5 (RB5) is an azo dye widely used in the textile industry for dyeing fabrics. It is categorized as a recalcitrant dye that is hard to degrade and an environmental pollutant. Therefore, textile waste effluents containing this dye must be treated to remove or degrade the dye, before being released into the environment. One method that can be used to degrade synthetic dyes such as RB5 is to use biological methods, by directly using live fungal cells or using laccase enzymes. Trichoderma asperellum LBKURCC1 is a filamentous fungus isolated from cacao plantation soil in Riau, Indonesia, and it is a laccase enzyme producer. To be able to determine the ability of T. asperellum LBKURCC1 life cultures to decolorize RB5 dye, several RB5 dye removal tests were carried out. Incubation of 50 ppm RB5 with life cultures of T. asperellum LBKURCC1 at room temperature (30°C, pH 6.5) for 24 hours resulted in 22% bioremediation, 3.2% biosorption and 19.1% biodegradation of the RB5 dye.  The results of this study show that the live culture of T.asperellum LBKURCC1 is capable of biodegrading RB5. This is indicated by the degradation of RB5 by extracellular enzymes produced by these filamentous fungi.


Keywords


Azo dye; Laccase; Reactive black 5; Trichoderma asperellum

Full Text:

PDF

References


Adnan, L.A., Sathishkumar, P., Yusoff, A.R.M., Hadibarata, T., Ameen, F., 2017. Rapid bioremediation of alizarin red s and quinizarine green ss dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes. Bioprocess Biosyst. Eng. 40: 85–97. https://doi.org/10.1007/s00449-016-1677-7

Akhtar, N., Mannan, M.A., 2020. Mycoremediation: expunging environmental pollutants. Biotechnol. Reports 26, e00452. https://doi.org/10.1016/j.btre.2020.e00452

Al-Tohamy, R., Ali, S.S., Li, F., Okasha, K.M., Mahmoud, Y.A.G., Elsamahy, T., Jiao, H., Fu, Y., Sun, J., 2022. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160

Aljerf, L., 2018. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite : kinetics and equilibrium study. J. Environ. Manage. 225, 120–132. https://doi.org/10.1016/j.jenvman.2018.07.048

Anita, S.H., Ardiati, F.C., Ramadhan, K.P., Laksana, R.P.B., Sari, F.P., Nurhayat, O.D., Yanto, D.H.Y., 2022. Decolorization of synthetic dyes by tropical fungi isolated from Taman Eden 100, Toba Samosir, North Sumatra, Indonesia. HAYATI J. Biosci. 29: 417–427. https://doi.org/10.4308/hjb.29.4.417-427

Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C.E., Herrera De Los Santos, M., Levin, L., Rojo-Domínguez, A., Romero-Martínez, D., Saparrat, M.C.N., Trujillo-Roldán, M.A., Valdez-Cruz, N.A., 2019. Laccases: structure, function, and potential application in water bioremediation. Microb. Cell Fact. 18: 1–33. https://doi.org/10.1186/s12934-019-1248-0

Awin, L.A., A. El-Rais, M., M. Etorki, A., Mohamed, N.A., Makhlof, W.A., 2018. Removal of aniline blue from aqueous solutions using Ce1-xBixCrO3 (x = 0, 0.5, 1). Open J. Inorg. Non-metallic Mater. 08, 1–10. https://doi.org/10.4236/ojinm.2018.81001

Dahlena, M., Rahayu, F., Purba, M.L.D., Nurulita, Y., Dahliaty, A., Yanti, Nugroho, T.T., 2022. Preliminary kinetic studies on the degradation of the textile dye methyl blue by Trichoderma asperellum LBKURCC1 laccase without mediators, in AIP Conference Proceedings 2638 100005. https://doi.org/10.1063/5.0104615

Dahliaty, A., Amalita, L., Putri, Y.P., Ristanti, W.A., Yanti, Nugroho, T.T., 2023. Partial purification of Trichoderma asperellum LBKURCC1 laccase by ammonium sulfate fractionation and ultrafiltration dialysis, in AIP Conference Proceedings 2480, 040011

Donkadokula, N.Y., Kola, A.K., Naz, I., Saroj, D., 2020. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 19: 543–560. https://doi.org/10.1007/s11157-020-09543-z

El Bouraie, M., El Din, W.S., 2016. Biodegradation of reactive black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustain. Environ. Res. 26: 209–216. https://doi.org/10.1016/j.serj.2016.04.014

Eteba, A., Bassyouni, M., Saleh, M., 2023. Utilization of chemically modified coal fly ash as cost-effective adsorbent for removal of hazardous organic wastes. Int. J. Environ. Sci. Technol. 20: 7589–7602. https://doi.org/10.1007/s13762-022-04457-5

Ilić Đurđić, K., Ostafe, R., Prodanović, O., Đurđević Đelmaš, A., Popović, N., Fischer, R., Schillberg, S., Prodanović, R., 2020. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Front. Environ. Sci. Eng. 15, 19. https://doi.org/10.1007/s11783-020-1311-4

Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R., Bharagava, R.N., 2021. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 9, 105012. https://doi.org/10.1016/j.jece.2020.105012

Kumar, A., Arora, P.K., 2022. Biotechnological applications of manganese peroxidases for sustainable management. Front. Environ. Sci. 10, 1–11. https://doi.org/10.3389/fenvs.2022.875157

Liu, F., Li, J., 2018. Application of fenton process in industrial wastewater treatment plant. IOP Conf. Ser. Earth Environ. Sci. 146. https://doi.org/10.1088/1755-1315/146/1/012023

Rahayu, A.G., Utama, P.S., Nurulita, Y., Miranti, M., Nugroho, T.T., 2019. Surfactant, nitrogen and carbon media optimization for Trichoderma asperellum LBKURCC1 Laccase production by flask solid state fermentation of rice straw. J. Phys. Conf. Ser.1351, 012030.

Shanmugam, S., Ulaganathan, P., Swaminathan, K., Sadhasivam, S., Wu, Y.R., 2017. Enhanced biodegradation and detoxification of malachite green by Trichoderma asperellum laccase: Degradation pathway and product analysis. Int. Biodeterior. Biodegrad. 125: 258–268. https://doi.org/10.1016/j.ibiod.2017.08.001

Sing, N.N., Husaini, A., Zulkharnain, A., Roslan, H.A., 2017. Decolourisation Capabilities of ligninolytic enzymes produced by Marasmius cladophyllus UMAS MS8 on remazol brilliant blue r and other azo dyes. Biomed Res. Int. 2017. https://doi.org/10.1155/2017/1325754

Singh, A., Pal, D.B., Mohammad, A., Alhazmi, A., Haque, S., Yoon, T., Srivastava, N., Gupta, V.K., 2022. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresour. Technol. 343, 126154. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126154

Singh, N.J., Wareppam, B., Ghosh, S., Sahu, B.P., Ajikumar, P.K., Singh, H.P., Chakraborty, S., Pati, S.S., Oliveira, A.C., Barg, S., Garg, V.K., Singh, L.H., 2020. Alkali-cation-incorporated and functionalized iron oxide nanoparticles for methyl blue removal/decomposition. Nanotechnology 31, 425703. https://doi.org/10.1088/1361-6528/ab9af1

Slama, H. Ben, Bouket, A.C., Pourhassan, Z., Alenezi, F.N., Silini, A., Cherif-Silini, H., Oszako, T., Luptakova, L., Golińska, P., Belbahri, L., 2021. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl. Sci. 11: 1–21. https://doi.org/10.3390/app11146255

Tang, K.H.D., Darwish, N.M., Alkahtani, A.M., AbdelGawwad, M.R., Karácsony, P., 2022. Biological removal of dyes from wastewater: a review of its efficiency and advances. Trop. Aquat. Soil Pollut. 2: 59–75. https://doi.org/10.53623/tasp.v2i1.72

Tavares, M.F., Avelino, K.V., Araújo, N.L., Marim, R.A., Linde, G.A., Colauto, N.B., do Valle, J.S., 2020. Decolorization of azo and anthraquinone dyes by crude laccase produced by Lentinus crinitus in solid state cultivation. Brazilian J. Microbiol. 51: 99–106. https://doi.org/10.1007/s42770-019-00189-w

Umar, A., 2021. Screening and evaluation of laccase produced by different Trichoderma species along with their phylogenetic relationship. Arch. Microbiol. 203: 4319–4327. https://doi.org/10.1007/s00203-021-02420-5

Varjani, S., Rakholiya, P., Ng, H.Y., You, S., Teixeira, J.A., 2020. Microbial degradation of dyes: an overview. Bioresour. Technol. 314, 123728. https://doi.org/10.1016/j.biortech.2020.123728

Vásquez, D., Palominos, F., Martínez, S., 2020. Visible-light photocatalytic degradation of aniline blue by stainless-steel foam coated with TiO2 grafted with anthocyanins from a maqui-blackberry system. Catalysts 10: 1–16. https://doi.org/10.3390/catal10111245




DOI: http://dx.doi.org/10.31258/jnat.21.2.93-99

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Titania Tjandrawati Nugroho, Putri Nabilah, Nuria Wulandari, Yuana Nurulita, Andi Dahliaty, Yanti Yanti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.