Karakter Root Re-Growth Sebagai Parameter Toleransi Aluminium pada Tanaman Padi

Dewi Indriyani Roslim, Miftahudin Miftahudin, Utut Suharsono, Hajrial Aswidinnoor, Alex Hartana

Abstract


Aluminum (Al) is one of the major limited factors in crop production on acid soils. Aluminum tolerant plants can beselected from plant breeding program by one of the physiological parameters representing Al tolerance character,such as root re-growth capability during recovery from the Al-stress. In this study we determined the concentrationand time exposure of Al stress that was able to differentiate the response of three local upland rice varieties(Grogol, Hawarabunar and Krowal) and an Al-sensitive rice variety (IR64) to Al-stress, and evaluated the effectivenessof root re-growth (RRG) characters as an Al tolerance parameter in rice. The study consisted of three experiments,which were 1) nutrient culture experiment with different Al concentration treatments in growth chamber, 2) potexperiment in greenhouse using Jasinga yellow red podzolic acid soil containing 26,66 me/100 g Al and pH 4,6 asplanting media, and 3) phenotyping of F2 population using RRG character. The results showed that Al treatment at15 ppm for 72 h was able to distinctly differentiate between Al-tolerant (Grogol and Hawarabunar) and Al-sensitivevarieties (Krowal and IR64). Planting of the rice varieties on acid soils showed similar result as that of the nutrientculture. Phenotyping of F2 population using RRG character indicated the existence of RRG value variation. Thesevariations demonstrated that RRG character can be used as an Al tolerance parameter in rice and therefore can beeffectively applied to screen rice F2 population that segregate to Al tolerance character.

Keywords


aluminum tolerance, rice, root re-growth, tolerance parameter

Full Text:

PDF

References


Asfaruddin. 1997. Evaluasi Ketenggangan Varietas-varietas padi gogo terhadap keracunan aluminium dan efisiensinya dalam penggunaan kalium. Tesis Pascasarjana. Bogor: Institut Pertanian Bogor.

Delhaize, E., Ryan, P.R., Hebb, D.M., Yamamoto, Y., Sasaki, T. & Matsumoto, H. 2004. Engineering high level aluminum tolerance in barley with the ALMT1 gene. PNAS 101(42): 15249-15254.

Doncheva, S., Amenos, M., Poschenrieder, C. & Barcelo, J. 2005. Root cell patterning: a primary target for alumunium toxicity in maize. J of Exp Bot 56(414): 1213-1220.

Farid, N. 1997. Pengujian Plasma Nutfah Padi Gogo untuk ketenggangan terhadap tanah masam dan ketahanan terhadap penyakit blas. Tesis Pascasarjana. Bogor: Institut Pertanian Bogor.

Khatiwada, S.P., Senadhira, D., Carpena, A.L., Zeigler, R.S. Fernandez, P.G. 1996. Variability and genetics of tolerance for aluminum toxicity in rice (Oryza sativa L.). Theor Appl Genet 93:738-744.

Kim, B.Y., Baier, A.C., Somers, D.J. & Gustafson, J.P. 2001. Aluminum tolerance in triticale, wheat and rice. Euphytica 120: 329-337.

Liao, H., Wan, H., Shaff, J., Wang, X., Yan, X. & Kochian, V.L. 2006. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141: 674-684.

Ma, Q., Rengel, Z. & Kuo, J. 2002. Short Communication: Aluminium toxicity in rye (Secale cereale): root growth and dynamics of cytoplasmic Ca2+ in intact root tips. Annals of Bot 89: 241-244.

Miftahudin, Scoles, G.J. & Gustafson, J.P. 2002. AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). Theor Appl Genet 104: 626-631.

Miftahudin, Scoles, G.J. & Gustafson, J.P. 2004. Development of PCR-based co-dominant markers falnking the Alt3 gene in rye. Genome 47: 231-238.

Nguyen, B.D., Brar, D.S., Bui, B.C., Nguyen, T.V., Pham, L.N. Nguyen, H.T. 2003. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106: 583-593.

Samac, D.A. & Tesfaye, M. 2003. Plant improvement for tolerance to aluminum in acid soils – a review. Plant Cell, Tissue and Organ Culture 75:189-207.

Silitonga, T.S. 2008. Konservasi dan pengembangan sumberdaya genetik padi untuk kesejahteraan petani. Pekan Budaya Padi 2008 – KRKP. Badan Penelitian dan Pengembangan, Departemen Pertanian.

Suparto, H. 1999. Evaluasi ketenggangan padi gogo terhadap cekaman aluminium dan efisinesi penggunaan nitrogen. Tesis Pascasarjana. Bogor: Institut Pertanian Bogor.

Syakhril. 1997. Evaluasi Reaksi Varietas-varietas Padi gogo terhadap cekaman aluminium dan kekurangan nitrogen. Tesis Pascasarjana. Bogor: Institut Pertanian Bogor.

Wang, J.W. & Kao, C.H. 2004. Reduction of Aluminum-inhibited Root growth of Rice Seedlings with Supplemental Calcium, Magnesium and Organic Acids. Crop, Env and Bioinf 1:191-198.

Zhang, X., Jessop, R.S. & Ellison, F. 1999. Inheritance of root regrowth as indicator of apparent aluminium tolerance in triticale. Euphytica 108: 97-103.

Zhang, X., Garnet, T., Davies, K., Peck, D., Humphries, A. & Auricht, G. 2004. Genetic evaluation and improvement of acid stress tolerance in lucerne breeding. http:// regional.org.au/au/asa/2004/poster/3/6/4/631_zhangxg.htm




DOI: http://dx.doi.org/10.31258/jnat.13.1.82-88

Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Dewi Indriyani Roslim, Miftahudin, Utut Suharsono, Hajrial Aswidinnoor, Alex Hartana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.