Pengaruh CdCl2 terhadap Produksi Eksopolisakarida dan Daya Hidup Azotobacter

Reginawanti Hindersah, Dedeh Hudaya Arief, Soetijoso Soemitro, Lukman Gunarto


The contamination of toxic heavy metal Cadmium (Cd) in soils will be endanger the human health because it ismore available comparing to another toxic heavy metals. One method of Cd-contaminated soil bioremediation isusing exopolysachharide-producing bacteria Azotobacter. Exopolysachharides (EPS) can mobilize Cd through theformation of complex Cd-EPS which sequentially can increase the availability of Cd for plants uptake. A laboratoryexperiment has been done to study the EPS production and the viability of six Azotobacter isolates in the liquidculture containing 0.01, 0.1, and 1 mM CdCl2. The bacteria were cultured in liquid medium with and without CdCl2 for72 hours at room temperature. The EPS production was determined by gravimetric method after precipitationusing acetone and centrifugation at 7000 rpm. The result was that all of Azotobacter isolates produce EPS in thepresence of CdCl2. In the culture with 1 mM CdCl2, the density of Azotobacter sp. isolate BS3, LK5, LKM6 increasedsignificantly, and that of isolate LH16 decreased. No significant effect of CdCl2 on the density of isolate BS2 andLH15. This research suggested that some Azotobacter isolates were relatively resistence to the Cd and could bedeveloped as biological agents in Cd-contaminated soil bioremediation.


Cadmium, Azotobacter, Exopolysachharides, Bioremediation

Full Text:



Alloway, B.J. 1995. Cadmium. Di dalam: Alloway, B.J (ed). Heavy Metals in Soils. Glasgow: Blackie Academic & Professional.

Boularbah, A., Morel, J.L., Bitton, G., & Guckert, A. 1992. Cadmium biosorption and toxicity to six cadmium-resistant-gram positive bacteria isolated from contaminated soil. Environ. Toxic. and water qual. 7: 237-246.

Brooks, R.R. 2000. Phytochemistry of Hyperaccumulators Di dalam: Brooks, R.R. (ed). Plants that Hyperaccumulate Heavy Metals. Cambridge: CAB International.

Chen, J.H., Lion, L.W., Ghiorse, W.C., &. Shuler, M.L. 1995a. Mobilization of adsorbed cadmium and lead in aquifer material by bacterial extracellular polymers. Water Res. 29: 421-430.

Chen, J.H., Czajka, D.R., Lion, L.W., Shuler, M. L. & Ghiorse, W.C. 1995b. Trace metal mobilization in soil by bacterial polymers. Environ. Health Perspect. 103: 53-58.

Chien, S.H., Carmona, G., Prochnow, L.L., & Austin, E.R. 2003. Cadmium avalability from granulated and bulk-blended phosphate-potassium fertilizers. J. Environ. Qual. 32: 1911- 1914.

Cobbett, C.S. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123:825-832.

Cohen, G.H. & Johnstone. D.B.1964. Capsular polysachharide of Azotobacter agilis. J. Bacteriol. 88: 1695–1699.

Emtiazi, G., Ethemadifar, Z., & Habibi, M.H. 2004. Production of extracellular polymer in Azotobacter and biosorption of metal by exopolymer. Afr. J. Biotech. 3:330-333.

Hindersah, R., Muntalif, B.S. & Kalay, A.M. 2004a. Isolasi dan identifikasi mikroorganisme aerob dari lumpur kolam Anaerob di Instalasi Pengolahan Air Limbah Bandung. Makalah disampaikan pada Pertemuan Ilmiah Tahunan Persatuan Mikrobiologi. Semarang, 27-29 Agustus 2004.

Hindersah, R., Arief, D.H., & Kalay. A.M. 2004b. Rhizobacteria Azotobacter: Influence on Pb and Cd adsorption by roots of sweet corn. Makalah disampaikan pada International Biotechnology Conference. Sanur, 1-3 Desember 2004.

Hindersah, R. & Kalay, A.M. 2006. Akumulasi timah hitam dan kadmium pada tajuk selada setelah aplikasi Azotobacter dan lumpur IPAL.J. Budidaya Pertanian 2: 1-5.

Hindersah, R., Arief, D.H., Soemitro, S., & Gunarto, L. 2006 . Exopolysaccharide Extraction from Rhizobacteria Azotobacter sp. Proc. International Seminar IMTGT. Medan, 22-23 Juni 2006. Hal 50-55.

Ishmayana, S., Rosita, N., Kristina, Y., Kamara, D.S., Hindersah, R., & Soemitro, S. 2007. Komposisi asam amino peptida ã-glutamilsistein yang diisolasi dari tajuk selada (Lactuca sativa L.) dengan dan tanpa inokulasi Azotobacter sp. LKM6. Makalah dipresentasikan di Seminar Nasional Biokimia. Depok, 9 januari 2007.

Kothandaraman, R., Vasundhara, G., Kurup, G.M., Jacob, V.B., & Sethuraj, M.R. 2002. Nitrogen fixation by Azotobacter chroococcum under cadmiun stress. Indian J. of Microbiol. 42: 15-17.

Lasat, M.M. 2002. Phytoextraction of toxic metals. A review of biological mechanisms. J. Environ. Qual. 31: 109-120.

Nies, D.H. 1992. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid. 27: 17-28.

Sabra, W., Zeng, A.P., Lunsdorf, H., & Deckwer, W.D. 2000. Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Appl. Environ. Microbiol. 66: 4037-4044.

Schinner, F., Ohlinger, R., Kandeler, E., & Margesin, R. 1995. Methods in Soil Biology. Berlin Heidelberg: Springer-Verlag.

Stuczynski, T.I., McCarty, G.W., & Siebielec, G. 2003. Response of soil microbiological activities to cadmium, lead, and zinc salt amendments. J. Environ. Qual. 32: 1346-1355.

Trevor, J.T., Stratton, G.W., & Gadd, G.M. 1986. Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol. 32: 447-464.

Vermani, M.V., Kelkar, S.M., & Kamat, M.Y. 1997. Studies in polysaccharide production and growth of Azotobacter vinelandii MTCC 2459, a plant rhizosphere isolate. Lett. Appl. Microbiol. 24: 379-383.

Vries, M.P.C. & Tiller, K.G. 1978. The effect of sludge from two Adelaide sewage treatment plants on the growth of and heavy metal concentration in lettuce. Australian J. of Agric. and Animal Husban.18: 143-147.



  • There are currently no refbacks.

Copyright (c) 2012 Reginawanti Hindersah, Dedeh Hudaya Arief, Soetijoso Soemitro, Lukman Gunarto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.